a2 United States Patent

Dean et al.

US009146967B2

(10) Patent No.:

(45) Date of Patent:

US 9,146,967 B2
Sep. 29, 2015

(54) MULTI-STAGE QUERY PROCESSING
SYSTEM AND METHOD FOR USE WITH
TOKENSPACE REPOSITORY

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

Applicant: Google Inc., Mountain View, CA (US)

Inventors: Jeffrey A. Dean, Palo Alto, CA (US);

Paul G. Haahr, San Francisco, CA
(US); Olean Sercinoglu, Mountain
View, CA (US); Amitabh K. Singhal,
Palo Alto, CA (US)

Assignee: Google Inc., Mountain View, CA (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 361 days.
Appl. No.: 13/851,036
Filed: Mar. 26,2013
Prior Publication Data
US 2013/0212092 A1l Aug. 15,2013

Related U.S. Application Data

Continuation of application No. 10/917,746, filed on
Aug. 13, 2004, now Pat. No. 8,407,239.

Int. Cl1.

GO6F 17/00 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC ... GO6F 17/3053 (2013.01); GO6F 17/3061

(2013.01); GOGF 17/30864 (2013.01)
Field of Classification Search
USPC 707/764
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,374,928 A 12/1994 Moore et al.
5,488,364 A 1/1996 Cole
5,548,751 A 8/1996 Ryu et al.
5,758,360 A 5/1998 Zbikowski et al.
5,812,999 A * 9/1998 Tatenoccovevineniene /1
5,848,407 A 12/1998 Ishikawa et al.
5,855,015 A 12/1998 Shoham
(Continued)
FOREIGN PATENT DOCUMENTS
EP 0584992 A2 3/1994
Jp 06-208453 7/1994
(Continued)
OTHER PUBLICATIONS

Google Inc., Third Office Action, CN 201110121210.2, Jun. 5, 2013,
2 pgs.
(Continued)

Primary Examiner — Mariela Reyes
Assistant Examiner — Mohsen Almani

57 ABSTRACT

A multi-stage query processing system and method enables
multi-stage query scoring, including “snippet” generation,
through incremental document reconstruction facilitated by a
multi-tiered mapping scheme. At one or more stages of a
multi-stage query processing system a set of relevancy scores
are used to select a subset of documents for presentation as an
ordered list to a user. The set of relevancy scores can be
derived in part from one or more sets of relevancy scores
determined in prior stages of the multi-stage query processing
system. In some embodiments, the multi-stage query process-
ing system is capable of executing one or more passes on a
user query, and using information from each pass to expand
the user query for use in a subsequent pass to improve the
relevancy of documents in the ordered list.

21 Claims, 10 Drawing Sheets

Multi-Stage Query Processing System Stage 2
500 Stage 1 Result Set of
502 504 506 | 510 Result Set DociDs,
S S S $ of DoclDs, | Second Stage | | ists of Positions
List of | p—— fions, | Query in the Docs,
GTokenlDs rstStage | score s. rocessor | Scores Sy, Sz
Query [—# g:;'zr E)?";zer i Query . (Score Based 3
P Processor > on Proximity,
Query New | Docs Select Top X Docs
u Dogs;] u
Terms Query GTokenlDs | Pos: (To User)) (To User)
Expansion I List \/\514
Slobal Terms | DociDs
lobal Tokenspace
Lexicon \/‘505 Inverse DocID Map
| Index Posltions
518 Stage 3 ! [2) <
S Result Setof 520 512 Stage 4 516
DocIDs, Result Set of New Query
. Lists of DoclIDs, Expansion
Stage 2 Third Stage | positions in the | Fourth Stage | g, 0615, Terms
Result Set of Query Docs, Scores Query Scores S1,5z,
DocIDs, Processor | g, s, s, Processor | g g,
Lists of —| (Score Based (Score Based -
Positions in the on Attributes, on Context, Docs Feedback
Docs, Scores Select Top Y Docs Select Top Z (To User) Module
S1, 82 Docs) (To User) Docs) {Optional)
Docs
527
Decoding System
i 52{/ 517
522 Attribute Mini- Tokenspace Global h
Table Lexi itory 24 508

US 9,146,967 B2

Page 2
(56) References Cited FOREIGN PATENT DOCUMENTS
U.S. PATENT DOCUMENTS Jp 09-218881 8/1997
Jp 2000-137730 5/2000
5,946,716 A 8/1999 Karp et al. JP 2003-242170 A 8/2003
5,987,457 A 11/1999 Ballard KR 10-0295354 9/2001
5,991,713 A 11/1999 Unger et al.
6,055,526 A 4/2000 Ambroziak OTHER PUBLICATIONS
6,154,737 A 11/2000 Inaba et al.
6,161,084 A 12/2000 Messerly et al. Fukushima, Basic technologies and trends of web search engines,
g%gg’g;g g} ;;3885 ﬁog;:lgval etal. part 1, basic technologies, pp. 363-372(2003).
6’388’585 Bl 5/2002 Lacerda Google, ISR/'WO, PCT/US2005/028192, Jan. 16, 2006, 11 pgs.
6.553.457 Bl 4/2003 Wilkins et al. Google, Office Action, CN 200580034128.9, Dec. 5, 2008, 3 pgs.
6,631,373 B1 10/2003 Otani et al. Google, Office Action, CN 200580034128.9, Jun. 8, 2010, 4 pgs.
6,646,577 B2 11/2003 Acharya et al. Google, Office Action, CN 200580034128.9, Apr. 25, 2008, 8 pgs.
6,728,722 Bl 4/2004 Shaylor Google, Office Action, CN 201010144526.9, Jan. 27, 2011, 6 pgs.
6,832,294 B2 12/2004 Wicki et al. Google, Office Action, CN 201110121210.2, Nov. 5, 2012, 3 pgs.
7,092,936 Bl 8/2006 Alonso et al. Gooel i .
8,612,208 B2* 122013 Cooper etal. woooovvrvcrro.. 704/9 oogle, Office Action, CN 201110121210.2, Nov. 16, 2011, 6 pgs.
040 P Google, Office Action, EP 05784308.8, May 10, 2012, 7 pgs.
2001/0049679 Al 12/2001 Yonaitis ;
2002/0091671 Al 7/2002 Prokoph Google, Office Action, EP 05784308.8, Aug. 12, 2010, 7 pgs.
2002/0101367 Al 8/2002 Geiger et al. Google, Office Action, JP 2007-525718, Nov. 10, 2010, 6 pgs.
2003/0204500 Al 10/2003 Delpech Google, Office Action, JP 2007-7005777, Jul. 25, 2011, 3 pgs.
2004/0044622 Al 3/2004 Bloft et al. Sheng, An information retrieval system based on automatic query
2004/0051896 Al 3/2004 Saitoh et al. . d honfield X Dec. 14-17. 2003. 4
2004/0158560 Al ~ 8/2004 Wen et al. expansion and hoplield network Dec. 14-17, 2003, 4 pgs.
2004/0225497 Al 11/2004 Callahan Google, Office Action, CN 201110121210.2, Nov. 5, 2012, 4 pgs.
2005/0210009 Al 9/2005 Tran
2006/0036599 Al* 2/2006 Glaseretal.ccoooernn.n 707/7 * cited by examiner

US 9,146,967 B2

Sheet 1 of 10

Sep. 29, 2015

U.S. Patent

L ainbi4
A oLl A 147"
/
EEEEEEE—
sjnsay ol
X9pPU| 9SJ9AU|
—p $)1085990.1d A1on wioysAg
adedsuayol ©) d ° Y Buissasold
- Aenp
Burng Aianp
S
N oLl TN
L\
£10)150d0Y | 3| 5 Eoﬂw\ﬂw < Kioysoday
asedsuayo suaxyoy uipossQ/butpoduy JuawNo20Qg
papoosug
q sbuiddepy
801 10JeIaUdD) UOIIXDT -
Zi1 \V4 90}
20l
wiv)sAg Buissadoud Juawnoso(
001

Wa)SAS |eASLI}OY UoneWIOU|

US 9,146,967 B2

Sheet 2 of 10

Sep. 29, 2015

U.S. Patent

[\]%4
Z-VY SUOdIXaT-1uliN
Jo4 depy sbuey plea

dsod Mels

dsod Mels

8sod Mels

a
0
=)

vsod Mels

\4

suojisod buiue)s
obuey uayo|

SUO2IXaT-IUIN

g
-
-
————
-
-
L
-
- -

waysAg Buipooag
JBuiposugy

Z 94nbi4
80¢C 90¢
Z-V SUODIXaT-IuIN uo9oIXa1 [eqo|o
II o
[]
| []
[J
H cNQuaol9| cuayoy
eNqgluaolD| ‘usyol
fqiuadolo [FYaiuanoLT | [“Nguexolo| ueyo)
— zqluayols [Z¥aluaoli Ngluayolo ousyoL
ooo | ‘@luayolo [Yaluexol F.zn__cm.v_o._.mu uonemoung 0z
— oguaxoro |ovquuexoyq | | calusdolo [‘sPeL TNLH X139.d
— salusol | sqgjuayolL sqluao] suajo|
1eqoio |eoo ledo|o anbiun
llllllll : I : | z/ \\
llllllll Ill'lll' I-a \\ Ilr \\
< Japng Japng Aioysoday
sbuiddepy uodIxa-uly uo9oIxa [eqo|9 ‘ jusawnsoq

o_‘rﬂ

._BNﬂ

S

4114

S

901

-
801
10JeI3auUdD UOIIX3T]

US 9,146,967 B2

Sheet 3 of 10

Sep. 29, 2015

U.S. Patent

sdnouog
paposuy

-9|qeuep

90¢ ﬂ

Japooug eyeqg

vo€ ﬂ

00€
waysAg Buipooug

10SS820.4d-84d

g¢ o.nbi4
JapooaQg
sdnoug (reuondo) uonewLIoju|
papoouz > eeq wbusq . 19pooaq ejleq » Jo 1817
-3|qelIeA
0LE ﬂ A% ﬂ
80¢€
wivysAg Buiposaqg
ve a4nbi4
Jopooug
«————] ejeq yibus |e—— (leuondo) | (leuondo) UoHBWIO|

J038I7

S

20¢

US 9,146,967 B2

Sheet 4 of 10

Sep. 29, 2015

U.S. Patent

ace

<

oju| JAINqUNY

oju] gaNquNyY

oju] 3INquURY

o¢ aunbi4
oze
walsAs
Buipodaqg P
/Buipoougy
1253

13

<

pJoooy
saINqUNY
papooug

91¢

<

ZZ29Y-V

wdsAg Buipodsag/buipodou] anquUNRY

199Y-V

099Y-v

a|qel plooay
saINqUNY

y74

F

0
M/usod

US 9,146,967 B2

Sheet 5 of 10

Sep. 29, 2015

U.S. Patent

a.1nbi
suonisod 4 4
jo (shs dnyjo00 aBe)g puosas dnyjoo7 abejs ysu14
ﬁ oY L
uomsod doy| xairoq 19GVEL | LOPS9
01601 -

Bulioog Py s 4
-—] . l————— ————————— [] [J
$91099 91607| “sqjo0q " sqlooq hd * suonIsod

‘suoljisod | uesjoog| o3| UOMISOd ‘day 101200 46 suomisog m L o A.wrm_._
‘sglooq uonisod ‘da 20 Buipe .
40 19s JInsay ﬂ z1y =" | d o 0aR2d HEIS 0 0 uso
oLy dep giooQ sq|ooq jo Ace/Usod
M suonisod Buiels 47
oLy 920¥
151 uonisod Atopsoday :zqgjuevol
dep
n pJ023y
® xapu|
0} giuaoL
suomsod (s)aluexolr
jo (shs] 1s17 uoilisod Aionsoday :Lquanol ﬂ [eqo|o
1s17 uonisod Alojisoday :pgjusyolr vov
(434 uooIXa
X9pUu| 9SJ9AU| 1#q019
80% m vor Ngm *
wdysAg Buissaosoud Auand (s)wuo] Aionp

US 9,146,967 B2

Sheet 6 of 10

Sep. 29, 2015

U.S. Patent

805 (s)uooixe ﬁN,.m\/ fiousoday (s)uooixan a|gel ,\/ g mkbm..m
,\/ [eqo19 aoedsuayo] -IUIN ainquny ces
LS _|_ _B_w>w b uoow_ .\W.Nm H
w upodaq
> _ _\Nwm
=T ss0Q
i (leuondo) (so0@ (19sn oL) (sooq 2g 1g
| 9npopy ! (1osn o1) Z do] 109|88 ss0Q A do] 199198 $01028 ‘$90(
| soeqpesy | soog ¥ || ‘“ewoo uo] | ‘somaumvuo | oujur suomsod
| 9oUBA3I9Y g — poseg 2109g) |« — paseg 0109g) |4— JO s8I
(I - S ™S | .ossasoig s ww 'S 10SS9201d ‘sg|o0qg
S'S sal02s f1onp $9100§ ‘s20Q fionp Jo 198 Jnsey
SuuoL S1I9AAIUS | 5615 ynoy | OUb Ul SUONISOd | aBejg payL z abeig
uoisuedxgy sdiooa Jo SIS
A1anp maN JO 198 }InsS9y ‘sglooa
918 ¥ obejs ZlS 029 Joleg)nsay ﬂ
S . | € 9bes 816
suonsod xapu| _
——————————— 9SJOAU| 80 uooIXaT
de 20 :
Warea — aoedsuayo _ ,\/ [eqo|o
aleed 1
_ AN suuo |
ST 1 squueso _ uotsuedx3 swua]
(»2sn 01) (so0q (280 01) 'sog | SAIUAOLO Asanp Kiond
$20(X do] 109j88 $20(Q] _ M3N
‘Awixoid uo AH—I 10SS390.d
Ah_l paseg a1095g) A1anp A|_| ._m_m_:maxm_ ———— .Nw._mn_ lt— A10ND
¢g ' 81098 | 0ss9901d 'S 91008 | 5FpgysuIg ony sqluaxoo | MOND
‘s20Q 3y} Ul Kiend ‘suopisod : _ joysI
suonisod Jo sisi | aBeyg puooag | ‘$01200 J0 S ﬂ S S
‘salood J9S)NsSay oLS _ 205 ¥0S 208
10 195 JNsay | ebeyg 0%
z ofeig woysAg Buissasoud Aienp abeig-ninpy

US 9,146,967 B2

Sheet 7 of 10

Sep. 29, 2015

U.S. Patent

9 a4nbi4

depy abuey Aypiea

SPJ029Y ANQURY

fiojisoday asedsuayo]

(s)uooixaT-luIy

(s)uooixe jeqolo

waysAg Buipoouzg

JO}JRIBUDL) UODIXDT

S|NPOA UOIIEDIUNWIWOY HIOMIBN

wvlsAg Bunesadp

N—

Z09 Alowapy

009
J9A19S BuISsa20.d Juswnosoqg

aseLa)ul
NIOMION N
809
9209
(s)ndo

09

US 9,146,967 B2

Sheet 8 of 10

Sep. 29, 2015

U.S. Patent

fAoysoday aosedsuayo]

SPJ023Y JANNALIY

(s)iossad0id Auanp

9941 Avnpd

Jasied Aond

dep giooa

depy aBuey Aupijea

s9|(eL uolje[suel] uodIxa

walsAg buipodag

X9pu| 9s19AU| doedsuarol

S|NPON UOIEIIUNWIWOY HJOMION

wid}sAg BunesadQ

N—

202 fowap

/ 91nbi14
aoseuajul
MIOMION ™~

802

902
(s)ndo

L v0L
00Z

19198 BuIssanoid Adnpd

US 9,146,967 B2

Sheet 9 of 10

Sep. 29, 2015

U.S. Patent

vg aunbi4 308 __
. ™ SJasSHO Yoolg 90¢
. hd pue suodixa uoibay uodIxa’ [eqo|D
n Z uoiboy R
dnoug | uoiBay .
dnoig °
dnoug [~ \\\ o uoibey . ENglueyol9| ctueyo)
dnouo s/U sjuswnoog 0¢8 o
uoibay ¢C8 paziuayjo] f¥sjasyQ | Huodixa ¢ QALY usyol
““““ S yoo|g uoiBay LNguaoLD| uaso)
° zc8 | ®Ms19esyo | #uodixaen Ngquuaols| o
% / ¥oolg uoibay ¢ U9l
/ T LN —
e Wsjasyo | Huoaixe | n__:wuv_o._.w uofjenjdund 114
guotbay soy LT 7 yoig uoiBay oquedol o |‘sheL TINLH xio.d
suayo] papodug |41~ S
7 odglasyO | %uodixaT] 0 sqguaxol suaxo
L _ - " ooig uoiboy leqo|o snbiun
i R 7 \, 1 (ye/usod
P T \ ya / \ 4
\ ¥€8- ogg [/ ves) : /
s . 1 # uoibay N\ ’
001X
wayshs Buipoouy | uoibay Japling Japjing fionsoday
saleuonodiqg Su092IXx9 uoiboy « uoDIXa [eqo|D juawnooq
uoiboy
/\\Jos F/(ﬂ,wJ 2oz W osﬂ
g8 a.nbi4 o

10}eJ8Uds) U0IIXaT

US 9,146,967 B2

Sheet 10 of 10

Sep. 29, 2015

U.S. Patent

g6 Q\-:m.‘ 4 906 €06

S S

apod Adony| adAy

yibug) ad adAy =

adA)
yibus|) usxo|

06 m ¢06 ﬂ

v6 2inbi4

[2'8lo

g uoibay [91]61

40 v ¥o0|g 10} [6l91

sua)o] papooug [zl
LIS

// ////
// a///f
wajsAg Buipoouy
g uoibay jo v ¥o0|g g uoibay
Buisiudwon suayo] (jeqolo) K 10J UOJIXaT]
[44:] 0¢8
eoe L¢ | #SSL | 91 6 YA €l yi €l Ll | 7GGl | eee® | (|7

US 9,146,967 B2

1
MULTI-STAGE QUERY PROCESSING
SYSTEM AND METHOD FOR USE WITH
TOKENSPACE REPOSITORY

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 10/917,746, filed Aug. 13, 2004, now U.S. Pat.
No. 8,407,239, which application is incorporated by refer-
ence herein in its entirety.

This application is related to U.S. application Ser. No.
10/917,745, filed Aug. 13, 2004, entitled “System and
Method For Encoding And Decoding Variable-Length Data”,
now U.S. Pat. No. 7,068,192, and U.S. application Ser. No.
10/917,739, filed Aug. 13, 2004, entitled “Document Com-
pression System and Method For Use With Tokenspace
Repository,” now U.S. Pat. No. 7,917,480, which are incor-
porated by reference herein in their entirety.

TECHNICAL FIELD

The disclosed embodiments relate generally to data pro-
cessing systems and methods, and in particular to a multi-
stage query processing system and method for use with a
collection of documents with an associated index (hereinafter
also referred to as a “tokenpace repository™).

BACKGROUND

Information retrieval systems (e.g., search engines), match
queries against an index of documents generated from a docu-
ment corpus (e.g., the World Wide Web). A typical inverse
index includes the words in each document, together with
pointers to their locations within the documents. A document
processing system prepares the inverted index by processing
the contents of the documents, pages or sites retrieved from
the document corpus using an automated or manual process.
The document processing system may also store the contents
of the documents, or portions of the content, in a repository
for use by a query processor when responding to a query.

There is a continuing need for more sophisticated query
searching and scoring techniques to ensure that query results
are relevant to the query. Some scoring techniques may
require a partial reconstruction of the candidate documents,
for example to determine the context of query terms or key-
words found in the documents. Unfortunately, introducing of
such sophisticated techniques can result in a degradation of
search performance due to the additional processing and
overhead involved.

SUMMARY OF EMBODIMENTS

The disclosed embodiments include a multi-stage query
processing system and method for use with a tokenspace
repository. The multi-stage query processing system and
method enables multi-stage query scoring, including “snip-
pet” generation, through incremental document reconstruc-
tion facilitated by a multi-tiered mapping scheme. At one or
more stages of a multi-stage query processing system a set of
relevancy scores are used to select a subset of documents for
presentation as an ordered list to a user. The set of relevancy
scores can be derived in part from one or more sets of rel-
evancy scores determined in prior stages of the multi-stage
query processing system. In some embodiments, the multi-
stage query processing system is capable of executing two or
more passes on a user query, and using information from each

10

15

20

25

30

35

40

45

50

2

pass to expand the user query for use in a subsequent pass to
improve the relevancy of documents in the ordered list.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an embodiment of a informa-
tion retrieval system.

FIG. 2 is a conceptual block diagram of an embodiment of
the lexicon generator of FIG. 1.

FIG. 3A is a block diagram of an embodiment of an encod-
ing system for encoding documents for a tokenspace reposi-
tory.

FIG. 3B is a block diagram of an embodiment of a decod-
ing system for decoding documents in a tokenspace reposi-
tory.

FIG. 3C is a block diagram of an embodiment of an
attribute encoding/decoding system for encoding/decoding
document attributes.

FIG. 4 is a block diagram of an embodiment of a query
processing system for use with a tokenspace repository.

FIG. 5 is a block diagram of an embodiment of a multi-
stage query processing system for use with a tokenspace
repository.

FIG. 6 is a block diagram of an embodiment of a tokens-
pace repository server.

FIG. 7 is a block diagram of an embodiment of a query
processing server.

FIG. 8A is a block diagram of a second embodiment of a
tokenized document repository, and

FIG. 8B is a conceptual block diagram of a second embodi-
ment of the lexicon generator of FIG. 1.

FIG. 9A is a conceptual diagram of an encoding process
used in the embodiment of the lexicon generator, and

FIG. 9B depicts exemplary data structures for representing
encoded tokens.

Like reference numerals refer to corresponding parts
throughout the several views of the drawings.

DESCRIPTION OF EMBODIMENTS
System Overview

FIG. 1 is a block diagram of an embodiment of an infor-
mation retrieval system 100. The information retrieval system
100 includes a document processing system 102 and a query
processing system 104. The information retrieval system 100
can be any system that is capable of retrieving information in
response to a query, including but not limited to one or more
computer systems for performing expressed or implicit docu-
ment searches on one or more networks, such as the Internet
(e.g., via the World Wide Web) or an intranet, or locally on a
user’s computer (e.g., of files, email, applications, etc.). Note
that the term “documents” means documents, web pages,
emails, application specific documents and data structures,
Instant Messaging (IM) messages, audio files, video files, and
any other data or applications that may reside on one or more
computer systems.

Document Processing System

The document processing system 102 generally includes
one or more document repositories 106, a lexicon generator
108, an encoding/decoding system 110 and a tokenspace
repository 112. The encoding/decoding system 110 retrieves
documents from the one or more document repositories 106,
parses the documents into tokens, encodes the tokens into a

US 9,146,967 B2

3

compressed format using mappings from the lexicon genera-
tor 108, then stores the encoded tokens in the tokenspace
repository 112.

A “token” can be any object typically found in a document,
including but not limited to terms, phrases, punctuation,
HTML tags and the like. After parsing, a set of documents is
represented as a sequence of tokens. Furthermore, each token
in the sequence of tokens has a token position, which also
represents the position of the token in the set of documents.
For example, the first token in the set of documents may be
assigned a position of 0, the second token in the set of docu-
ments may be assigned a position of 1, and so on.

It is noted that in some implementations, a completely
different set of computers are used for encoding documents
than the computers used for decoding documents. For
instance, a web crawling system may include a document
processing system 102 that encodes documents, while a query
processing system 104 may decode selected portions of the
encoded documents. In such implementations, the document
inverse index and tokenspace repository 112 built by the
document processing system 102, or copies thereof, are used
by the query processing system 104.

The lexicon generator 108 generates the mappings used for
encoding a set of documents by parsing the documents. A first
mapping produced by the lexicon generator 108 is herein
called the global-lexicon, which identifies all distinct tokens
(herein called unique tokens) in the set documents, and
assigns a global token identifier to each unique token. A
second mapping produced by the lexicon generator 108 is
actually a sequence of mappings, each of which is herein
called a mini-lexicon. Each respective mini-lexicon is used
only for encoding and decoding a respective range of posi-
tions in the set of documents. The generation and use of the
global-lexicon and the mini-lexicons are explained in more
detail below.

Query Processing System

The query processing system 104 includes one or more
query processors 114 coupled to the encoding/decoding sys-
tem 110 and a tokenspace inverse index 116. The tokenspace
inverse index 116 maps all the GTokenIDs in the set of docu-
ments to their positions within the documents. Conceptually,
the inverse index 116 contains a list of token positions for
each GTokenlID. For efficiency, the list of token positions for
each G'TokenID is encoded so as to reduce the amount of
space occupied by the inverse index.

In some embodiments, the one or more query processor(s)
114 parse a query into multiple query terms which are trans-
formed by the one or more query processors 114 into a query
expression (e.g., Boolean tree expression). The query terms
are used to index the tokenspace inverse index 116 to retrieve
token positions, as described more fully with respect to FIG.
4. In some embodiments, the token positions are used in a
multi-stage query processing system for scoring documents
relevant to the query, as described with respect to FIG. 5. In
response to the query terms, the query processors 114 gener-
ate an ordered list of documents which are presented to the
user via one or more modes of communication (e.g., display
device, audio, etc.).

Lexicon Generator

FIG. 2 is a conceptual block diagram of an embodiment of
the lexicon generator 108 of FIG. 1. The lexicon generator
108 includes a global-lexicon builder 202 and a mini-lexicon
builder 204.

10

15

20

25

30

35

40

45

50

55

60

65

4
Global-Lexicon Builder

The global-lexicon builder 202 retrieves documents from
the document repository 106 and generates a global-lexicon
206 by assigning unique global token identifiers (GToken-
IDs) to each unique token contained in the documents. In
some embodiments, the document repository 106 is logically
or physically split into multiple portions, sometimes called
partitions, and a separate global-lexicon 206 is generated for
each partition. In one embodiment, a set of several billion
documents is divided into several thousand partitions, each of
which s processed to generate a global-lexicon 206. A typical
global-lexicon 206 can include a few million unique tokens.

In some embodiments, the set of documents to be encoded
(e.g., the documents in one partition) are sorted in accordance
with one or more criteria prior to the parsing of the documents
into tokens and the processing of the tokens. Such sorting of
the documents can facilitate efficient encoding of the token-
ized documents, because documents that use similar sets of
words will be positioned near each other in the set of docu-
ments. As a result, each mini-lexicon (described below) will,
onaverage, cover a larger portion of the set of documents than
would otherwise be the case, and more generally, the encod-
ing of the documents will occupy less space. In one embodi-
ment, the set of documents are first sorted by language, and
then the documents for each language are sorted by URL,
with the fields of the host name portion of the URL being
reversed in order. For example, after the sorting by language,
all the French documents will be grouped together, and then
the French documents will be sorted by URL. When sorting
by URL, each URL initially comprises a pattern of h1.h2 . ..
hyhz/n1/n2 . . ., where h1.h2 . . . hy.hz comprises the host
name portion of the URL and /n1/n2 represents the remainder
of the URL. The URL is remapped to the pattern hz.hy . . .
h2.h1/nl1/n2 ... prior to the sorting by URL. For example, the
URL “www.google.com/about.html” is remapped to “com-
.google.www/about.html”. By reversing the host name fields
of the URLs prior to sorting by URL, the documents are
sorted in accordance with their logical proximity to each
other. Thus, similar types of documents (within the group of
documents for a particular language) are grouped together;
within the group of documents for each document type, docu-
ments on each web site are grouped together; within the
documents for each website, the documents for various
branches of the website are grouped together; and so on.

In some embodiments, the documents are ordered using
one or more clustering techniques. Terms, words or phrases
contained in documents can be used to organize the docu-
ments into clusters that relate to various concepts. For
example, general information about the documents (e.g.,
meta-data embedded in or otherwise associated with the iden-
tified documents), sampled content from the identified docu-
ments, and/or category information about the documents can
be used to order the documents.

In some embodiments, while parsing the documents the
global lexicon builder 202 stores information (not shown in
FIG. 2) about each identified unique token, such as the num-
ber of occurrences of each unique token in the set of docu-
ments, and the language (if any) associated with the unique
token. The language associated with a unique token may be
determined based on the language associated with the docu-
ment(s) in which the token is found. When a particular token
is found in documents associated with more than language,
the language associated with the token may be determined
using any suitable methodology. One suitable methodology is
a statistical methodology that is used while parsing the set of
documents to identify unique tokens. Each token is initially

US 9,146,967 B2

5

assigned to the language of the first document in which it is
found, and then for each subsequent occurrence of the token
that occurs in a document of a language other than the current
language assigned to the token, the token is reassigned to the
other language only if a randomly (or pseudo-randomly)
selected number between 0 and 1 is less than 1/N, where N is
the current count of occurrences of the token. In other
embodiments, any similar or otherwise suitable language
assignment mechanism can be used to associate a language
with each unique token. In some embodiments, a language is
not associated with the unique tokens representing punctua-
tion symbols. In yet another embodiment, while a language
may be associated with every unique token, the language
association is ignored when processing the N (e.g., 256) most
frequently occurring tokens. As a result, the language asso-
ciated with punctuation tokens is effectively ignored.

In some embodiments, the list of unique tokens, and the
associated frequency and language information, is sorted
based on frequency of occurrence of the unique tokens.
Optionally, the entries can then be further sorted to facilitate
space efficient encoding of the set of documents. For instance,
in one embodiment, all the unique tokens are first sorted by
frequency of occurrence. The resulting sorted list of unique
tokens is then divided into bands. For instance, the top band,
Band 0, may comprise the top 255 or 256 tokens (i.e., those
with the highest frequency counts). The second band, Band 1,
may comprise the top 2'* (i.e., 65,536) tokens, excluding the
tokens in Band 0. The third band, Band 2, may comprise the
next 2'* (i.e., 65,536) tokens in the sorted list of unique
tokens. Of course, the number of tokens in each band may
differ in other embodiments. Next, the tokens in each band are
sorted in accordance with a second set of criteria. For
instance, in one embodiment, the tokens in the first band are
sorted alphabetically, that is by numeric or alphabetic value.
Each of the other bands are sorted first by language, and then
alphabetically. As a result, the sorted tokens in each band
other than Band 0 are grouped by language, and within each
language group the tokens are sorted alphabetically. In other
embodiments, other sorting criteria may be used for sorting
the unique tokens in each of the bands.

The sorting process produces a sorted list of the unique
tokens, each having a respective position in the list. Each
sorted unique token is then assigned a unique global token
identifier (hereinafter also referred to as “GTokenID”). GTo-
kenIDs can include any suitable data type and width depend-
ing upon the platform used to implement the document pro-
cessing system 102 (e.g., 32-bit unsigned integers). In some
embodiments, GTokenIDs are assigned to the sorted unique
tokens in increasing order, so that high-frequency tokens are
assigned small valued GTokenIDs and low-frequency tokens
are assigned large valued GTokenIDs. To be more specific, in
one embodiment, each token in the sorted list of tokens is
assigned a 32-bit global token identifier equal to its numeric
position in the sorted list of unique tokens. Thus, the first
token in the list is assigned a GTokenID equal to 0 (i.e.,
00000000 in hexadecimal format), the second token in the list
is assigned a GTokenID equal to 1, and so on. The resulting
set of mappings of GTokenIDs to unique token values is
herein called the global-lexicon 206. In some embodiments,
the global lexicon 206 actually comprises two mapping struc-
tures, one which maps GTokenIDs to tokens, and another that
maps tokens to GTokenIDs. The mapping of tokens to GTo-
kenIDs is used during the encoding process, while the map-
ping of GTokenIDs to tokens is used while decoding portions
of the documents.

As will be explained more fully below, ordering the unique
tokens based on frequency helps reduce the amount of space

10

15

20

25

30

35

40

45

50

55

60

65

6

required for storing the mini-lexicons 208. This is true even in
those embodiments in which bands of the unique tokens are
sorted based on criteria other than frequency of occurrence,
because the tokens in the bands assigned to lower GTokenIDs
have higher frequencies of occurrence than the tokens in the
bands assigned to higher GTokenIDs.

In some embodiments, “special” tokens that occur more
frequently than the average token, such as HTML tags and
punctuation, are assigned GTokenIDs which occupy a prefix
205 portion of GTokenIDs in the global-lexicon 206 (e.g.,
GTokenlD,-GTokenID,,_,). All other GTokenIDs can be oft-
set by the last special GTokenID allocated to the prefix 205.

In the above discussion, the GTokenIDs are described as
fixed length values, such as 32-bit unsigned integer values.
However, these same GTokenIDs can also be considered to be
variable length identifiers, because when the GTokenIDs are
encoded for storage, the most significant bytes (or bits) that
are equal to zero may be truncated or masked off during
encoding. For instance, in some embodiments, all GToken-
IDs with a value of less than 2® are encoded as a single byte
value, all GTokenIDs with a value of less than 2'° are encoded
as a two-byte value, and all GTokenIDs with a value of less
than 2°* are encoded as a three-byte value. In this way, the
tokens having the highest frequencies of occurrence in the set
of documents are represented by shorter length GTokenIDs
than the tokens having lower frequencies of occurrence.

In the embodiments described below, the tokenspace
repository is populated with fixed length LTokenIDs, rather
than the variable-length GTokenIDs. However, mapping the
LTokenIDs in the tokenspace repository back to the original
tokens (which are also of variable length, of course) requires
the storage of a large number of “mini-lexicons”, and the
content of the mini-lexicons comprises GTokenIDs. To effi-
ciently store the mini-lexicons, the GTokenIDs in each mini-
lexicon may be treated as variable length values. Alternately,
the GTokenIDs in each mini-lexicon may be treated as a list
that is first delta encoded, and then the resulting delta values
are encoded using a variable length encoding scheme.

Mini-Lexicon Builder

After the global-lexicon 206 is generated, a set of mini-
lexicons 208 are generated by the mini-lexicon builder 204
for use by the encoding/decoding system 110. Eachentry ina
mini-lexicon 208 includes a GTokenID and a corresponding
local token identifier (LTokenID). The LTokenID for each
entry is implied by the position of the entry in the mini-
lexicon 208, and therefore does not need to be explicitly
stored. Each respective mini-lexicon 208 is used only for
encoding and decoding a distinct, respective specific range of
token positions in the tokenized documents, thus allowing the
same set of LTokenIDs to be used by each mini-lexicon 208.
For example, a first mini-lexicon 208 (e.g., mini-lexicon A)
having P (e.g., 256) entries is generated for the first P unique
tokens encountered by the mini-lexicon builder 204 as it
parses through the documents. Once the first P unique tokens
have been encountered, a first entry in a “valid range map”
210 is made which includes the starting token position, Start_
Pos, for the range of token positions for which the first
mini-lexicon 208 is valid. Each of the P LTokenIDs in the first
mini-lexicon 208 is assigned to a unique GTokenID. When all
of'the LTokenIDs have been assigned to GTokenIDs, a second
mini-lexicon 208 (e.g., mini-lexicon B) is generated for the
next P unique tokens encountered by the mini-lexicon builder
204, and a second entry is made in the valid range map 210
which includes the starting token position, Start_Posz, of the
range of positions for which the second mini-lexicon 208 is

US 9,146,967 B2

7

valid. Thus, a token having a position in the tokenized docu-
ments that falls within the range Start_Pos to Start_Pos ~1
can be decoded using mini-lexicon B, as shown in FIG. 2.

To provide a concrete example, in one embodiment the
LTokenIDs in each mini-lexicon have values from 0 to 255,
each represented by an 8-bit unsigned integer, while the GTo-
kenlIDs are 32-bit unsigned integers. A first mini-lexicon is
generated by scanning the set of documents, starting at token
position 0, until a predefined number P (e.g., 256) of distinct
tokens are identified. The GTokenIDs for the P distinct tokens
are assembled in a list. In some embodiments, the GTokenIDs
in the list are sorted by numeric value, with the smallest
GTokenlIDs at the top of the list. LTokenIDs are then assigned
to the GTokenIDs in the list, in accordance with the positions
ofthe GTokenIDs in the list. For instance, the first GTokenID
in the list is assigned an LTokenID of 0, the next GTokenID in
the list is assigned an L TokenID of 1, and so on. The resulting
mapping of LTokenIDs to GTokenIDs is called a mini-lexicon
208. A range of token positions, from Start_Pos, to Start_
Posg, is associated with the mini-lexicon. A second mini-
lexicon is generated by scanning the set of documents starting
at the position Start_Pos; immediately following the last
position associated with the first mini-lexicon. The scanning
continues until the predefined number P of distinct tokens are
identified, at which point a second mini-lexicon is generated
using the same process as described above. The mini-lexicon
builder 204 continues to generate a sequence of mini-lexicons
208 for subsequent ranges of token positions in the set of
documents until all the tokens in the documents have been
mapped to mini-lexicons 208.

In an alternate embodiment, the first F LTokenIDs in each
mini-lexicon 208 are reserved for the F most popular tokens
in the set of documents. For these F LTokenIDs, the LTokenID
is always equal to the GTokenID. This assignment scheme
facilitates fast decoding of documents. Whenever an [To-
kenID (in the tokenspace repository) having a value of F-1 or
less is decoded, it can be mapped to a token directly in
accordance with the global-lexicon without having to first
map the LTokenID to a corresponding GTokenID.

The same set of LTokenIDs (e.g., 0to 255) are used in each
mini-lexicon 208. To {facilitate compression of the docu-
ments, the [TokenIDs have a smaller width (e.g., 1 byte) than
the GTokenIDs (e.g., 4 bytes). The difference of these widths
(e.g., 3 bytes) represents a reduction in the number of bytes
per token used to store the tokenized documents in the tokens-
pace repository 112. In an embodiment in which each LTo-
kenID occupies one byte, a set of documents having 1 billion
tokens will occupy 1 billion bytes (1 GB) in the tokenspace
repository 112, ignoring the space occupied by other support-
ing data structures (which are described later in this docu-
ment).

When the process of generating mini-lexicons 208 is com-
plete, every token in the tokenized documents is associated
with a mini-lexicon 208 based on its position in the tokenized
documents. Note that each unique token in the tokenized
documents may be associated with more than one mini-lexi-
con 208 if the token occurs in more than one position range.
In one embodiment, an average document has approximately
1100 tokens and an average mini-lexicon 208 spans around
1000 tokens.

After each mini-lexicon 208 is generated, the tokens in the
corresponding portion of the set of documents is mapped to
LTokenIDs by the encoding/decoding system 110 and stored
in the tokenspace repository 112 for subsequent retrieval.
With this mapping, every token in the document repository
106 is mapped to a fixed length (e.g., one byte) LTokenID in
the tokenspace repository 112. Thus, during decoding/de-

20

30

35

40

45

60

8

compression it is possible to jump from one token position to
another in the tokenspace repository 112 without the need of
skip tables or equivalent data structures, which can slow down
the decoding process.

In some embodiments, the mini-lexicons 208 are encoded
in a compressed format and stored until needed for document
reconstruction. In one embodiment, the sorted list of GTo-
kenIDs in each mini-lexicon 208 is delta encoded, and then
the resulting list of delta values is encoded in a compressed
format, preferably in a format that facilitates fast and efficient
decoding and reconstruction of the mini-lexicon. A suitable
data structure and encoding/decoding method are described
in co-pending U.S. patent application Ser. No. 10/917,745,
filed Aug. 13, 2004, entitled “System and Method For Encod-
ing And Decoding Variable-Length Data.”

To decompress a particular document, the mini-lexicons
208 associated with the range of token positions for that
document are decompressed into translation tables or map-
pings built from entries of the mini-lexicons 208 which trans-
late the LTokenIDs to their corresponding GTokenIDs. Thus,
decoding a tokenized document in the tokenspace repository
112 is accomplished by reading the fixed-length L'TokenIDs
stored in the tokenspace repository 112 for the document, and
accessing the mini-lexicon for each token position in the
document to translate the LTokenIDs into corresponding
GTokenIDs. The GTokenIDs are then mapped into the corre-
sponding tokens (e.g., text and punctuation) using the global-
lexicon 206, thereby reconstructing all or a portion of the
document.

Encoding System

FIG. 3A is a block diagram of an embodiment of an encod-
ing system 300 for encoding documents for a tokenspace
repository. The encoding system 300 includes an optional
preprocessor 302, an optional delta encoder 304 and a vari-
able-length data encoder 306. Variable-length data can
include various data types, such as, without limitation, inte-
gers, character strings, floating-point numbers, fixed-point
numbers and the like. The variable-length data includes but is
not limited to text, images, graphics, audio samples and the
like.

In some embodiments, a list of information is received by
the preprocessor 302 which orders the information for effi-
cient encoding. The preprocessor 302 may order the data into
a monotonic sequence using one or more sorting algorithms.
For example, if a set of integers are sorted by value, then
adjacent integers will be close in magnitude, thus enabling the
delta encoder 304 to generate delta values that are small
valued integers for encoding. The ordered data is received by
the delta encoder 304, which computes differences between
adjacent pairs of the ordered data to obtain the small valued
integers. The small valued integers are received by the vari-
able-length data encoder 306, which encodes the data into a
compressed format which can be efficiently decoded. One
example of a suitable variable-length data encoder 306 is
described more fully in co-pending co-pending U.S. patent
application Ser. No. 10/917,745, filed Aug. 13, 2004, entitled
“System and Method For Encoding And Decoding Variable-
Length Data.”

Various information generated by the document process-
ing system 102 can be encoded using all or part of the encod-
ing system 300. In some embodiments, the GTokenIDs in
each mini-lexicon 208 are sorted using the preprocessor 302
to ensure that integer values closest in magnitude will be delta
encoded. The ordered GTokenIDs are then delta encoded by
the delta encoder 304 to provide difference or residual values.

US 9,146,967 B2

9

The difference values are then encoded in groups (e.g., groups
of 4 values) into a compressed format using the variable-
length data encoder 306. In some embodiments, lists of token
positions in an inverse index are similarly encoded to facili-
tate fast and efficient decoding of the positions, as described
more fully with respect to FIG. 4.

While the variable-length data encoder 306 provides a
compressed format that facilitates fast and efficient decoding,
other known encoding schemes can also be used in the docu-
ment processing system 102 to compress a list of information
(e.g., CCITT-G4, LZW etc.).

Decoding System

FIG. 3B is a block diagram of an embodiment of a decod-
ing system 308 for decoding documents in a tokenspace
repository. The decoding system 308 includes a variable-
length data decoder 310 and an optional delta decoder 312. In
some embodiments, encoded groups of data are received by
the variable-length data decoder 310, which decodes the
groups with the assistance of one or more offset/mask tables.
The decoded data is received by the delta decoder 312, which
computes running sums, thereby producing delta-decoded
data, which is equivalent to the original list of information.
The use of offset/mask tables in decoding group encoded
variable-length integer values is described more fully in co-
pending U.S. patent application Ser. No. 10/917,745, filed
Aug. 13, 2004, entitled “System and Method For Encoding
And Decoding Variable-Length Data.”

Attribute Encoding/Decoding System

FIG. 3C is a block diagram of an embodiment of an
attribute encoding/decoding system 314 for encoding/decod-
ing document attributes. The attribute encoding/decoding
system 314 includes an encoding/decoding system 320 which
encodes attribute information 322 into attribute records 318
for storage in an attribute table 316. The attributes for a
document are determined on a token-by-token basis, witha O
or 1 bit value being used to represent the presence or absence
of each attribute for a given token. For instance an attribute
record 318 in the attribute table may be conceptually repre-
sented as an AxK bit map, where A is the number of attributes
that are encoded and K is the number of tokens whose
attributes are represented by the record 318. If A is 8 and K is
32, then each attribute record 318 stores eight attributes for
each of 32 tokens. Each attribute record 318 may be encoded
so as to compress the amount of space occupied by the
attributes table while enabling very fast decoding of selected
attribute records during query processing. One suitable meth-
odology for encoding and decoding the attribute records 318
is described in co-pending U.S. patent application No.
10/917,745, filed Aug. 13, 2004, entitled “System and
Method For Encoding And Decoding Variable-Length Data.”
Alternately, the information in each attribute record may be
run-length encoded.

The set of attributes that are recorded in the attribute table
316 can include one or more font attributes (e.g., bold, under-
lined, etc.), one or more document position attributes (e.g.,
title, heading), metadata and any other features or character-
istics that can be used to distinguish between the tokens in a
set of documents. In some embodiments, the attributes of the
tokens in a set of documents are identified and encoded at the
same time that the tokenized documents are encoded and
stored in the tokenspace repository, as described above. The

5

10

15

20

25

30

35

40

45

50

55

60

65

10

encoded attributes are used in one or more stages of relevancy
scoring, as described more full with respect to FIG. 5.

Document Repository Encoding and Decoding
System—Second Embodiment

FIGS. 8A and 8B are block diagrams of an embodiment in
which a tokenized collection of documents (a “tokenspace
repository”) is encoded in a somewhat different way than the
one described above. As described above, a global lexicon
builder 202 tokenizes the set of documents 106, identifies all
unique tokens, and assigns global token identifiers to all the
unique tokens. The result is a global lexicon 206. Next, the set
of documents (which have been tokenized) are processed by
a region lexicons builder 804. Conceptually, the set of docu-
ments are divided into regions 820, and each region 820 is
divided into blocks 822. The region lexicons builder 804
builds a “lexicon” or dictionary 830 for each region, and an
encoding system 810 generates a set of encoded tokens 832
for each region, plus a set of block offsets 834 for each region.
Theregion lexicon 830, the encoded tokens 832 and the block
offsets 834 (each of which will be described in more detail
next) together form an encoded representation of a respective
region 820 of the set of documents.

In one embodiment, the set of documents is divided into
regions 820, each of which (except perhaps a last region) has
apredetermined, fixed size, such as 8192 tokens (or any other
appropriate size). Each block 822 of a region 820 also has a
predefined, fixed size, such as 64 tokens (or any other appro-
priate size).

In one embodiment, the “lexicon” 830 for a respective
region 820 is an ordered listing of the longest sequences of
tokens having the highest repeat rates, or any similar struc-
ture. The lexicon 830 may be built by building a table of
candidate token strings in the region, determining their repeat
counts within the region, and then selecting the best candi-
dates until a maximum lexicon size is reached. In an exem-
plary embodiment, the maximum lexicon size is 64 tokens,
but any other appropriate size limit may be used in other
embodiments. As will be described next, the lexicon 830 is
used as a context for encoding each of the blocks 822 of the
respective region 820, enabling a highly compressed repre-
sentation of the region. In some embodiments, one or more of
the region lexicons 830 may be encoded in a compressed
format, for instance using the encoding method described in
U.S. patent application Ser. No. 10/917,745, filed Aug. 13,
2004, entitled “System and Method For Encoding And
Decoding Variable-Length Data,” referenced earlier in this
document.

Referring to FIGS. 9A and 9B, in one embodiment the
encoding system 810 encodes each block 822 of tokens as
follows. The lexicon 830 for the corresponding region is
treated as a set of tokens that immediately precede the tokens
of the block. In sequence, the tokens of the block are pro-
cessed from first to last, matching each token and as many
subsequent tokens as possible with the longest matching
token sequence in the preceding sequence of tokens, includ-
ing the lexicon 830. If a matching preceding sequence is
found, a “copy code” is generated. Otherwise a “literal code”
is generated to represent the token. All tokens covered by the
current code are then treated as preceding tokens for subse-
quence processing of the next token (if any) in the block. As
shown in FIG. 9B, each “code” representing the set of tokens
in a block may include a type field 902. If the code is a “literal
code” the second portion 904 of the code represents the global
token identifier. In some embodiments, this type field 902
indicates the number of bits required to represent the global

US 9,146,967 B2

11

token identifier. For example, in one embodiment, the type
code 902 can indicate up to seven distinct literal codes, each
having a corresponding global token identifier length. In
other embodiments, the number of distinct type codes may be
more or less than eight (e.g., one indicating a copy code and
the rest indicating literal codes). If the literal code is a “copy
code” the second portion 906 of the code may include a
pointer 908 and a length 910, where the pointer 908 indicates
where in the preceding text to start, and the length 910 indi-
cates the length of the matching sequence (i.e., the number of
tokens to be copied during decoding). Thus, if a matching
sequence of, say, four tokens is found by the encoding system
810, beginning at a location 31 tokens preceding the current
position, then the code for this sequence would be:
<type=copy, ptr=31, length=4>.

The length ofa copy code (as measured in bits) will depend
on the maximum token length of the region lexicon 830 and
the maximum token length of the block, the maximum
allowed length of a matching sequence, and the number of
distinct codes. In one example, the type field 902 is 3 bits
(allowing 8 type codes), the pointer field 908 is 7 bits and the
length field 910 is 2 bits, for a total of 12 bits. Other bit lengths
for each field of a copy code may be used in other embodi-
ments. The length of each literal code (as measured in bits) is
specified by the type of the literal code.

Referring back to FIG. 8B, as the encoding system 810
encodes the blocks of a region, the encoding system 810
generates a set of block offsets 834 indicating the locations of
the encoded tokens for each block of the region. In one
embodiment, the block offset of the first block of the region is
apointer into the token repository, and each of the other block
offsets for the region is a relative offset with respect to the
starting position of the first block in the region. In one
embodiment the region lexicons 830 and block offsets 834 are
stored in a table or equivalent data structure that is indexed in
accordance with the starting positions of the regions 820
divided by the fixed region size. From another viewpoint,
each region 820 is assigned a Region Number comprising its
starting position divided by the fixed region size, and the data
structure(s) in which the region lexicons 830 and block off-
sets 834 are stored are indexed by Region Number.

Decoding a block 822 of a region 820 is accomplished by
locating the region lexicon 830 of the corresponding region,
locating the encoded block using the block offsets 834 for the
region, and then decoding the set of the codes for the block so
as to produce a sequence of global token identifiers. The
resulting sequence of global token identifiers, or any subset
thereof, may then be converted into a corresponding set of
symbols or terms using the global lexicon 206.

Query Processing System

FIG. 4 is a block diagram of an embodiment of the first
stage of a query processing system 104 for use with a tokens-
pace repository. The query processing system 104 includes a
global-lexicon 402, a tokenspace inverse index 408, a first
stage look-up table 406 and a second stage look-up table 410.
Query terms or strings are received by the global-lexicon 402
which translates query terms into GTokenIDs using a trans-
lation table or mapping built from entries of the global-lexi-
con 402. The GTokenIDs are received by the inverse index
408, which includes a map 404 for mapping the GTokenIDs to
index records 412 stored in the inverse index 408. Each index
record 412 identified using the map 404 contains a list of
token positions, which directly correspond to token positions
in the tokenspace repository 112. In some embodiments, the
inverse index 408 is generated after the global-lexicon is

10

15

20

25

30

35

40

45

50

55

60

65

12

generated, and may be generated during the same pass
through the documents that is used to generate the mini-
lexicons.

In some embodiments, the inverse index 408 provides a list
of positions which can be used as an index into the first stage
look-up table 406. When the query contains multiple terms,
multiple lists of positions are produced by the inverse index
408. To avoid having to search the entire DocID map 410 for
an entry corresponding to each position in the list(s) of posi-
tions, the first stage look-up table 406 has one entry for each
block of positions in the tokenspace repository. For example,
each block may have a size of 32,768 positions, and each
entry may have a pointer to a first entry in the DocID lookup
table 410 for the corresponding block of positions. Thus, the
first stage look-up table 406 translates the list(s) of positions
into starting point positions for document identifier (DocID)
entries 412 in the second stage look-up table 410, which is
sometimes called the DocID table 410. Alternately, tables 406
and 410 may be jointly called the DocID lookup table. Each
entry 412 in the second stage look-up table 410 includes a
DocID (document identifier) and a starting repository posi-
tion for the corresponding document. The last token in any
document is the position immediately prior to the starting
position identified by the next entry 412 in the second stage
look-up table. The starting point positions Start_Pos,_, for
DoclDs are received by the second look-up table 410 which
translates the starting point positions into a list of DocIDs for
each of the query terms.

In some embodiments, the first stage query processor
includes logic 416 for producing a result set. The lists of
DoclIDs are merged by logic 416, in accordance with the
Boolean logic specified by the query or query tree, to form a
result set of DocIDs. The logic 416 may also optionally filter
the lists of token positions to eliminate token positions not
located within the documents corresponding to the DocIDs in
the result set. Furthermore, a scoring function may be applied
to the result set, using the DoclIDs and token positions within
each document identified by the DoclDs so as to associate a
score (sometimes called a query score) with each DocID in
the result set.

Multi-Stage Query Processing

FIG. 5 is a block diagram of an embodiment of a multi-
stage query processing system 500 for use with a tokenspace
repository 524. In some embodiments, the query processing
system 500 includes four stages of query processing and
relevancy score generation, including a first stage query pro-
cessor 510, a second stage query processor 514, a third stage
query processor 518 and a fourth stage query processor 520.
Note that more or fewer query processor stages can be used in
the system 500 depending upon the application. Each stage
calculates one or more sets of relevancy scores which can be
returned to the user and/or combined with relevancy scores
generated in previous stages, depending upon the application.

Query Processing—Stage [

The first stage query processor 510 was generally
described with respect to FIG. 4. A query string 502 is token-
ized and parsed by a query parser 504 into query terms (i.e.,
each distinct term in the query is treated as a token). The
tokenized query terms are translated by the global-lexicon
508 to corresponding GTokenIDs using a translation table or
mapping, as previously described with respect to FIGS. 2 and
4. Since users may employ special operators in their query
string, including Boolean, adjacency, or proximity operators,

US 9,146,967 B2

13

the system 500 parses the query into query terms and opera-
tors. These operators may occur in the form of reserved punc-
tuation (e.g., quotation marks) or reserved terms in a special-
ized format (e.g., AND, OR). In the case of a natural language
processing (NLP) system, operators can be recognized
implicitly in the language used no matter how the operators
might be expressed (e.g., prepositions, conjunctions, order-
ing, etc.). Other query processing may also be included in the
first stage query processor 510, such as deleting stop words
(e.g., “a”, “the”, etc.) and term stemming (i.e., removing word
suffixes).

Next, the list of GTokenlDs are processed by a query
expander 506, which generates a query tree or other query
representation that takes into account any operators used in
the query string (e.g., a Boolean expression). Optionally, the
query expander 506 may also expand the query in various
ways. For instance, a query term may be converted into a
subtree containing the term and one or more synonym terms
or other terms related to the query term, with the terms in the
subtree being related to each other by an OR operator or
parent node.

Aswill be described in more detail below, in some embodi-
ments a query is processed one or more times by the sequence
of query processing stages shown in FIG. 5. On each pass
(other than the last), additional query expansion terms are
generated (as will be explained below), and then these addi-
tional terms are added to the query tree. The query tree can
also be used as a scoring tree, with weights being associated
with terms in the query tree. The expanded query tree can also
include supplemental terms and subtrees of terms that are not
required to be present in documents responsive to the query,
but which are used in scoring the relevance of documents
responsive to the query. If there is more than one query term,
during the first pass weights may be computed for the query
terms to improve the search results.

In some embodiments, the first pass through the system
500 processes a random sample of documents from a docu-
ment corpus. The size of the random sample can be selected
based on one or more smaller random samples that can be
used by the system 500 to estimate a number of documents
that match the query across the document corpus. In other
embodiments, a first document corpus (e.g., a set of query
sessions) is used in the first pass through the system 500 and
a second, different corpus is used in a second or subsequent
pass through the system 500. Using previous sets of query
sessions enables the system 500 to determine other related
terms that commonly co-occur in similar queries. These
related terms can be used by the query expander 506 to
expand the query for subsequent passes.

The first stage query processor 510 uses the query terms to
search against a tokenspace inverted index 512 and to identity
documents matching the query. The first stage query proces-
sor 510 accesses the inverse index 512 to produce a list of
token positions (also called tokenspace repository positions)
for terms in the query tree and accesses the DocID Map 516
to produce a set of DoclIDs for the documents corresponding
to the token positions. In addition, the first stage processor
510 performs the Boolean logic specified by the query or
query tree so as to generate a set of DocIDs that are responsive
to the query. In some embodiments, the first stage query
processor 510 also computes a first set of relevancy scores S,
between the query and each document based on one or more
scoring algorithms. In general, scoring algorithms provide
relevancy rankings for each matching document based on one
or more query features, including but not limited to, the
presence or absence of query term(s), term frequency, Bool-
ean logic fulfillment, query term weights, popularity of the

25

35

40

45

14

documents (e.g., a query independent score of the document’s
importance or popularity or interconnectedness), proximity
of'the query terms to each other, context, attributes, etc. Inone
embodiment, the first set of relevancy scores S, are based on
a set of factors that include presence of query terms, term
frequency and document popularity.

In some embodiments, the first set of relevancy scores S,
can be used to select documents for presentation as an ordered
list to the user, who can then simply click and follow internal
pointers to the selected document. In other embodiments, the
first set of relevancy scores S, together with DocIDs and
corresponding positions, are provided to the second stage
query processor 514 for further processing.

Query Processing—Stage 11

The second stage query processor 514 receives a set of
DoclDs, a list of tokenspace repository positions for the cor-
responding documents, and a first set of relevancy scores S;
from the first stage query processor 510. The second stage
query processor 514 uses the list of positions to generate a
second set of relevancy scores S, based on the proximity or
relative positions of query terms found in the documents.
When the terms in a query occur near to each other within a
document, it is more likely that the document is relevant to the
query than if the terms occur at greater distance. Thus, the
second set of relevancy scores S, are used to rank documents
higher if the query terms occur adjacent to one another or in
close proximity, as compared to documents in which the
terms occur at a distance. In some embodiments, the second
set of relevancy scores S, can be used to select the top X
documents for presentation as an ordered list to the user, who
can then simply click and follow internal pointers to the
selected document. In some embodiments, the second set of
relevancy scores S, is derived in part from the first set of
relevancy scores S, (e.g., by adjusting the S, scores in accor-
dance with the additional scoring factors used by the second
stage query processor 514) to generate an ordered list of
documents (ordered in accordance with the second set of
relevancy scores S,) for presentation to the user, and/or for
further processing by the third stage query processor 518.

Query Processing—Stage 111

In some embodiments, the second stage query processor
514 is coupled to a third stage query processor 518 for han-
dling term attributes (e.g., font attributes, title, headings,
metadata, etc.) which have been encoded in an attribute table
522, as previously described with respect to FIG. 3C. The
third stage query processor 518 receives a set of DoclDs, alist
of tokenspace repository positions for the corresponding
documents, and the second set of relevancy scores S, from the
second stage query processor 514. Alternately, the third stage
query processor receives the first set of relevancy scores S, as
well as the second set of relevancy scores S,.

Some studies show that the location of a term in a docu-
ment indicates its significance to the document. For example,
terms occurring in the title of a document that match a query
term may be weighted more heavily than query terms occur-
ring in the body of the document. Similarly, query terms
occurring in section headings or the first paragraph of a docu-
ment are likely to be more indicative of the document’s rel-
evancy to the query than terms occurring in less prominent
positions within the document. Other attributes that may be
used as indicators of relevancy include bolded text, under-
lined text and font size. Thus, the third set of scores S; are
determined using the attributes of tokens in the documents

US 9,146,967 B2

15

that match the query terms. Referring to FIG. 3C, to access the
attributes for the query terms in a document (i.e., the attributes
of the tokens matching or relevant to the query terms), the
token positions of the query terms in the document are used to
index into the attribute table 316 (522 in FIG. 5). More spe-
cifically, if the number oftokens whose attributes are encoded
by each attribute record 318 is K, then the token positions
divided by K are used to index into the attribute table 316. In
some embodiments, the identified attribute record or records
318are stored in an encoded, compressed form, and thus must
be decoded in order to determine the attributes associated
with each of the query terms.

In some embodiments, the third set of relevancy scores S,
can be used to select the top Y documents for presentation as
an ordered list to the user, who can then simply click and
follow internal pointers to the selected document. In some
embodiments, the third set of relevancy scores S; is derived in
part from one or more of the first and second sets of relevancy
scores S, and S, to generate an ordered list of documents for
presentation to the user, and/or for further processing by the
fourth stage query processor 520. In one embodiment, the S,
scores are produced by adjusting the S, scores in accordance
with the additional scoring factors produced by the third stage
query processor 518.

Query Processing—Stage [V

The fourth stage query processor 520 receives a set of
DoclDs, a list of positions in the documents corresponding to
the DoclIDs, and the third set of relevancy scores S, from the
third stage query processor 518. The fourth stage query pro-
cessor 520 may optionally receive the first and/or second sets
of relevancy scores S, and S, as well. The fourth stage query
processor 520 is coupled to a decoding system 527, which in
turn is coupled to one or more mini-lexicon maps 523, a
tokenspace repository 524 and one or more global-lexicon
maps 508. The mini-lexicon maps 523, tokenspace repository
524 and global lexicon maps 508 were all previously
described with respect to FIGS. 1 and 2.

The fourth stage query processor 520 generates a fourth set
of relevancy scores S, based on context, and may also gener-
ate a “snippet” for one or more of the documents listed in the
result set. Snippets are small portions of text from a docu-
ment, and typically include text that appears around the key-
words being searched. In one embodiment, to generate a
snippet for a document listed in the result set, the query
processor decodes a predefined number of tokens positioned
before and after the first occurrence of each query term
present in the document, thereby reconstructing one or more
text portions of the document, and then selects a subset of the
text portions to include in the snippet. Using the list of posi-
tions in the result set, the decoding system 527 can select the
mini-lexicons 523 that are needed to decode the portions of a
document that precede and follow the occurrences of the
query terms in the document. The selected mini-lexicons 523
and the global-lexicon 508 are used to translate I'TokenIDs in
the tokenspace repository into GTokenIDs, and to then trans-
late the GTokenlIDs into tokens, as described above with
respect to FIG. 2.

In some embodiments, the fourth set of relevancy scores S,
can be used to select the top Z documents for presentation as
an ordered list to the user, who can then simply click and
follow internal pointers to the selected document. In some
embodiments, the fourth set of relevancy scores S, is derived
in part from one or more of the first, second and third sets of
relevancy scores S, S, and S;, to generate an ordered list of
documents for presentation to the user, and/or for further

20

25

40

45

55

16

processing by a relevance feedback module 517. In an alter-
nate embodiment, the last stage query processor generates
snippets for the documents having the highest scores in the
relevancy scores produced by the preceding query processor
stage, but does not generate a new set of relevancy scores S,.

In some embodiments, the final set of relevancy scores are
provided to a relevance feedback module 517 which gener-
ates one or more new query expansion terms based on docu-
ments in the result set produced by the last query stage. For
example, the relevance feedback module 517 could imple-
ment one or more known relevance feedback algorithms,
including but not limited to, pseudo-relevance feedback algo-
rithms based on a full document approach (pseudo relevance
feedback based on a whole web page), Document Object
Model (DOM) segmentation, Vision-based Page Segmenta-
tion (VIPS), conceptual relevance feedback using concept
lattices, etc. The relevance feedback algorithms can analyze
the documents vetted from the previous query processing
stages and generate query expansion terms based the results
of'the analysis. The new query expansion terms are provided
to the query expander 506 which generates a new query
expression to be processed by one or more of the query
processors 510, 514,518 and 520. Thus, the multi-stage query
processing system 500 is capable of executing two or more
passes on a query, and using information from each pass to
generate improved queries which will ultimately result in the
user receiving more relevant documents.

In one embodiment, the last query stage processor 520
produces long snippets when performing the first pass pro-
cessing of a query, for example including N (e.g., 10 to 40)
tokens preceding and following each occurrence of the query
terms in a document. The snippet may be truncated if it
exceeds a predefined length. The query and the long snippets
produced by the last query stage 520 are provided to the
relevance feedback module 517, along with the relevance
scores, so as to generate a set of query expansion terms, and,
optionally, a set of query term weights as well. During a
second pass processing of the expanded query, the last query
stage 520 produces short snippets, suitable in length and
content for display with the list of documents in the result set
having the highest or best scores.

In one embodiment, the query processing system contains
L parallel query processing sub-systems, each of which con-
tains an inverse index 512 and a tokenspace repository 524 for
arespective subset of a collection of documents. For instance,
a query processing system may include over a thousand par-
allel query processing sub-systems. The relevance feedback
module 517 (FIG. 5) may be shared by all the query process-
ing sub-systems. During a first pass through the query pro-
cessing system, the query is processed by a small portion of
the parallel query processing sub-systems, while during a
second pass the query is processed by the entire query pro-
cessing system. For instance, the query processing system
may be divided into S subsets (e.g., 32 subsets), and each
query is assigned to one of the subsets in accordance with the
result of applying a hash function to a normalized version of
the query, and then applying a modulo function to the result
produced by the hash function. Each subset of the query
processing system may be called a “partition” of the query
processing system, and each query processing sub-system
may be called a “sub-partition”.

The main purpose of the first pass processing of the query
is to produce a set of query expansion terms, and query term
weights, so as to improve the quality of the query results
produced by the second pass processing of the query. As long
as the documents in the query processing system are fairly
randomly distributed across the query processing sub-sys-

US 9,146,967 B2

17

tems, the query needs to be processed by only a small number
of'sub-systems to produce a set of query expansion terms. The
query expansion terms are used by the query expander 506 to
produce an expanded query tree or query expression, which is
then processed by the query processing stages (in a second
pass processing of the query) as described above. For
example, the query “new york pictures” might be expanded to
“new york (pictures or images or image or picture).” The
result set and snippets produced by the last query stage during
the second pass may be formatted for display (or, more gen-
erally, presentation) by the computer or device from which
the query was received.

In one embodiment, the first pass processing of the query is
performed on a different database than the subsequent passes.
For instance, the initial database for the first pass may be a
database of previously processed queries, while the database
used for the subsequence passes may be a set of documents
having an inverse index for mapping query terms to docu-
ments in the database.

Document Processing Server

FIG. 6 is a block diagram of an embodiment of a tokens-
pace repository server 600. The server 600 can be a stand
alone computer system or part of a distributed processing
system including multiple computer systems. The server 600
generally includes one or more processing units (CPUs) 604,
one or more network or other communications interfaces 608,
memory 602, and one or more communication buses 606 for
interconnecting these components. The server 600 may
optionally include a user interface, for instance a display and
a keyboard. Memory 602 may include high speed random
access memory and may also include non-volatile memory,
such as one or more magnetic disk storage devices. Memory
602 may include mass storage that is remotely located from
the central processing unit(s) 604.

The memory 602 stores an operating system 610 (e.g.,
Linux or Unix), a network communication module 612, a
lexicon generator 614 (e.g., the lexicon generator 108), an
encoding system 616 (e.g., encoding system 300), one or
more global-lexicons 618 (e.g., global-lexicon 206), one or
more mini-lexicons 620 (e.g., mini-lexicons 208), a tokens-
pace repository 622 (e.g., tokenspace repository 112),
attribute records 624 (e.g., attribute records table 316), and a
validity range map 626 (e.g., validity range map 210). The
operation of each of these components has been previously
described with respect to FIGS. 1-5.

Query Processing Server

FIG. 7 is a block diagram of an embodiment of a query
processing server 700. The server 700 can be a stand alone
computer system or part of a distributed processing system
including multiple computer systems. The server 700 gener-
ally includes one or more processing units (CPUs) 704, one or
more network or other communications interfaces 708,
memory 702, and one or more communication buses 706 for
interconnecting these components. The server 700 may
optionally include a user interface, for instance a display and
a keyboard. Memory 702 may include high speed random
access memory and may also include non-volatile memory,
such as one or more magnetic disk storage devices. Memory
702 may include mass storage that is remotely located from
the central processing unit(s) 704.

The memory 702 stores an operating system 710 (e.g.,
Linux or Unix), a network communication module 712, a
tokenspace inverse index 714 (e.g., tokenspace inverse index

10

15

20

25

30

35

40

45

50

55

60

65

18

408), a decoding system 716 (e.g., a decoding system 308),
one or more lexicon translation tables or mappings 718 (e.g.,
derived from global-lexicon 206 and mini-lexicons 208), a
validity range map 720 (e.g., validity range map 210), a
DocID map 722 (e.g., DocID map 410), a query parser 724
(e.g., query parser 504), query tree 726, one or more query
processors 728 (e.g., query processors 510, 514, 518 and
520), attribute records 730 (e.g., attribute records table 316),
and a tokenspace repository 732 (e.g., tokenspace repository
112). The operation of each of these components has been
previously described with respect to FIGS. 1-5.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the illustrative discussions above are not intended to be
exhaustive or to limit the invention to the precise forms dis-
closed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention and vari-
ous embodiments with various modifications as are suited to
the particular use contemplated.

What is claimed is:

1. A method of processing a query in a multi-stage query
processing system having one or more processors and
memory storing one or more programs for execution by the
one or more processors to perform the method comprising:

performing a first stage processing of a query, including:

retrieving a first set of document identifiers from an
index in response to one or more query terms;

generating a first set of relevancy scores for a first set of
compressed documents corresponding to at least a
subset of the first set of document identifiers based on
one or more of: presence of query terms, term fre-
quency, and document popularity; and

storing the first set of relevancy scores in the memory;

performing a second stage processing of the query, includ-

ing:

generating a second set of relevancy scores for the docu-
ments in the first set of compressed documents based
on one or more of: a list of token positions for one or
more query terms in the query, distances between
query terms in the documents, attributes of tokens in
the documents, and text that appears around a query
term used in a document of the first set of documents;
and

storing the second set of relevancy scores in the memory;

reading the first and second set of relevancy scores from the

memory, and generating an ordered list of documents for

further processing based on the first and second set of

relevancy scores;

automatically generating additional query terms from the

documents in the ordered list of documents;
formulating a new query using the additional query terms;
processing the new query to retrieve a second set of docu-
ment identifiers from the index and to generate a third set
of relevancy scores based at least in part on the addi-
tional query terms; and

using the third set of relevancy scores to select a set of top

documents for presentation to the user.

2. The method of claim 1, wherein a respective token, of the
tokens in the documents, is a phrase.

3. The method of claim 1, wherein the second set of rel-
evancy scores are at least based on attributes of tokens in the
documents, wherein the attributes comprise font attributes of
tokens in the documents.

US 9,146,967 B2

19

4. The method of claim 1, further comprising:

decompressing at least a portion of the first set of com-

pressed documents to recover a first set of tokens,
wherein the first set of recovered tokens are associated
with positions in the first set of compressed documents
corresponding to the first set of document identifiers.

5. The method of claim 4, further comprising:

reconstructing one or more portions of the first set of com-

pressed documents using the first set of recovered
tokens.

6. The method of claim 5, further comprising:

presenting the reconstructed portions to a user in an

ordered list of the set of top documents.

7. The method of claim 1, wherein the third set of relevancy
scores are based on one or more positions of the query terms
in the set of compressed documents corresponding to the
second set of document identifiers.

8. The method of claim 1, wherein the first set of document
identifiers corresponds to locations of tokens corresponding
to the query terms in the tokenspace repository storing a set of
compressed documents.

9. The method of claim 1, wherein retrieving the first set of
document identifiers comprises using the index to produce a
list of token positions for the one or more query terms and
accessing a map to produce a set of documents identifiers
corresponding to the token positions.

10. A multi-stage query processing system, comprising:

one or More processors;

memory; and

one or more programs stored in the memory, the on or more

programs comprising instructions for:

performing a first stage processing of a query, including:

retrieving a first set of document identifiers from an
index in response to one or more query terms;

generating a first set of relevancy scores for a first set of
compressed documents corresponding to at least a
subset of the first set of document identifiers based on
one or more of: presence of query terms, term fre-
quency, and document popularity; and

storing the first set of relevancy scores in the memory;

performing a second stage processing of the query, includ-

ing:

generating a second set of relevancy scores for the docu-
ments in the first set of compressed documents based
on one or more of: a list of token positions for one or
more query terms in the query, distances between
query terms in the documents, attributes of tokens in
the documents, and text that appears around a query
term used in a document of the first set of documents;
and

storing the second set of relevancy scores in the memory;

reading the first and second set of relevancy scores from the

memory, and generating an ordered list of documents for

further processing based on the first and second set of

relevancy scores;

automatically generating additional query terms from the

documents in the ordered list of documents;
formulating a new query using the additional query terms;
processing the new query to retrieve a second set of docu-
ment identifiers from the index and to generate a third set
of relevancy scores based at least in part on the addi-
tional query terms; and

using the third set of relevancy scores to select a set of top

documents for presentation to the user.

10

20

30

35

40

45

50

55

60

65

20

11. The system of claim 10, wherein a respective token of
the tokens in the documents is a phrase.

12. The system of claim 10, wherein the second set of
relevancy scores are at least based on attributes of tokens in
the documents, wherein the attributes comprise font attributes
of tokens in the documents.

13. The system of claim 10, further comprising instructions
for:

decompressing at least a portion of the first set of com-

pressed documents to recover a first set of tokens,
wherein the first set of recovered tokens are associated
with positions in the first set of compressed documents
corresponding to the first set of document identifiers.

14. The system of claim 13, further comprising instructions
for:

reconstructing one or more portions of the first set of com-

pressed documents using the first set of recovered
tokens.

15. The system of claim 14, further comprising instructions
for:

presenting the reconstructed portions to a user in an

ordered list of the set of top documents.

16. A non-transitory computer-readable storage medium
storing one or more programs configured for execution by a
computer, the one or more programs comprising instructions
for:

performing a first stage processing of a query, including:

retrieving a first set of document identifiers from an
index in response to one or more query terms;

generating a first set of relevancy scores for a first set of
compressed documents corresponding to at least a
subset of the first set of document identifiers based on
one or more of: presence of query terms, term fre-
quency, and document popularity; and

storing the first set of relevancy scores in the memory;

performing a second stage processing of the query, includ-

ing:

generating a second set of relevancy scores for the docu-
ments in the first set of compressed documents based
on one or more of: a list of token positions for one or
more query terms in the query, distances between
query terms in the documents, attributes of tokens in
the documents, and text that appears around a query
term used in a document of the first set of documents;
and

storing the second set of relevancy scores in the memory;

reading the first and second set of relevancy scores from the

memory, and generating an ordered list of documents for

further processing based on the first and second set of

relevancy scores;

automatically generating additional query terms from the

documents in the ordered list of documents;
formulating a new query using the additional query terms;
processing the new query to retrieve a second set of docu-
ment identifiers from the index and to generate a third set
of relevancy scores based at least in part on the addi-
tional query terms; and

using the third set of relevancy scores to select a set of top

documents for presentation to the user.

17. The non-transitory computer-readable storage medium
of claim 16, wherein a respective token of the tokens in the
documents is a phrase.

18. The non-transitory computer-readable storage medium
of'claim 16, wherein the second set of relevancy scores are at
least based on attributes of tokens in the documents, wherein
the attributes comprise font attributes of tokens in the docu-
ments.

US 9,146,967 B2

21

19. The non-transitory computer-readable storage medium
of claim 16, further comprising instructions for:
decompressing at least a portion of the first set of com-
pressed documents to recover a first set of tokens,
wherein the first set of recovered tokens are associated
with positions in the first set of compressed documents
corresponding to the first set of document identifiers.
20. The non-transitory computer-readable storage medium
of claim 19, further comprising instructions for:
reconstructing one or more portions of the first set of com-
pressed documents using the first set of recovered
tokens.
21. The non-transitory computer-readable storage medium
of claim 20, further comprising instructions for:
presenting the reconstructed portions to a user in an
ordered list of the set of top documents.

#* #* #* #* #*

22

10

15

